A SIMPLE SOLUTION FOR CRT OPTIMIZATION.
Clinical Perspectives into QuickOpt Timing Cycle Optimization
Simple Timing Optimization for More Effective Therapy.

In one simple step, QuickOpt™ Timing Cycle Optimization provides IEGM-based AV timing optimization in CRT and ICD systems and VV timing optimization in CRT devices. Clinically proven to correlate favorably with conventional echocardiogram-based optimization methods, QuickOpt Timing Cycle Optimization can increase practice efficiencies and simplify patient management at a fraction of the time and cost.
Timing cycles do change over time.1, 2

- Timing cycle optimization is your first line of defense for non-responders and your opportunity to improve the outcomes of patients who do respond to CRT therapy.
- There are several possible reasons optimization is not occurring as frequently as it should:
 a. Lack of clear ESC (European Society of Cardiology) and ACC/AHA (American College of Cardiology/American Heart Association) guidelines
 b. Typically reserved only for CRT non-responders
 c. Requires a skilled echo sonographer
 d. Coordination of clinical services
 e. Resource constraints (e.g., cost, time)

A study by O'Donnell, et al. demonstrates that timing cycles in CRT patients do change in optimal AV and VV delay over time in the total patient cohort.1

Temporal variation in optimal VV and AV delays over the eight post-implant visits in the overall patient cohort. There is a significant reduction in LV predominance of the VV delay and a significant increase in optimal AV delay.

QuickOpt Timing Cycle Optimization is an IEGM-based method that recommends optimal AV and VV delays.

A clinical study in which Porciani, et al. assessed the effects of QuickOpt Timing Cycle Optimization on LV asynchrony and performance, as evaluated using real-time 3D echocardiography (RT3DE), supports QuickOpt Timing Cycle Optimization and CRT optimization.3 During follow up visits (9 +/- 8 months post implant), an echo test was performed before and after QuickOpt Timing Cycle Optimization of the AV and VV delays.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pre</th>
<th>Post</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{ms}6}$-SD (%)</td>
<td>3.1 ± 4.2</td>
<td>2.0 ± 2.9</td>
<td>ns</td>
</tr>
<tr>
<td>$T_{\text{ms}12}$-SD (%)</td>
<td>6.0 ± 5.7</td>
<td>3.0 ± 3.7</td>
<td>0.01</td>
</tr>
<tr>
<td>$T_{\text{ms}16}$-SD (%)</td>
<td>8.1 ± 4.9</td>
<td>4.2 ± 4.0</td>
<td><0.001</td>
</tr>
<tr>
<td>EXCg (mm)</td>
<td>3.4 ± 1.6</td>
<td>4.0 ± 1.1</td>
<td>0.02</td>
</tr>
<tr>
<td>EDV (mL)</td>
<td>210.1 ± 76.2</td>
<td>218.8 ± 84.7</td>
<td>ns</td>
</tr>
<tr>
<td>ESV (mL)</td>
<td>153.7 ± 72.9</td>
<td>153.4 ± 74.9</td>
<td>ns</td>
</tr>
<tr>
<td>SV (mL)</td>
<td>56 ± 16</td>
<td>64 ± 18</td>
<td>0.01</td>
</tr>
<tr>
<td>EF (%)</td>
<td>29.4 ± 11.4</td>
<td>32.4 ± 11.1</td>
<td><0.001</td>
</tr>
<tr>
<td>FT/RR</td>
<td>0.45 ± 0.08</td>
<td>0.48 ± 0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>ET/RR</td>
<td>0.29 ± 0.04</td>
<td>0.31 ± 0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>MPI</td>
<td>0.82 ± 0.30</td>
<td>0.72 ± 0.31</td>
<td>0.001</td>
</tr>
</tbody>
</table>

$T_{\text{ms}6}$-SD: standard deviation of the time to minimal systolic volume for 16 segments.
$T_{\text{ms}12}$-SD: standard deviation of the time to minimal systolic volume for the six basal segments
$T_{\text{ms}16}$-SD: standard deviation of the time to minimal systolic volume for the six basal and six mid segments

QuickOpt Timing Cycle Optimization suggested delays that resulted in a decrease in LV dyssynchrony and an improvement in LV systolic function.

Essential

Regular optimization with QuickOpt™ Timing Cycle Optimization can improve patient outcomes by recommending optimal AV and VV delays.
A study by Baker, et al. compares IEGM methods and echocardiogram for cardiac resynchronization therapy in heart failure patients and dual-chamber ICD implants. QuickOpt Timing Cycle Optimization provides a reliable and simpler alternative to standard optimization techniques and has been clinically proven to correlate with echo-based optimization techniques.

Effective

QuickOpt™ Timing Cycle Optimization is clinically proven to correlate with more time-consuming echo-based methods. It can be used for all St. Jude Medical CRT device recipients at implant or follow up.

Conclusions

QuickOpt Timing Cycle Optimization provides a reliable and simpler alternative to standard optimization techniques.
QuickOpt Timing Cycle Optimization optimizes AV and VV intervals for responders and non-responders in about one minute.

QuickOpt Timing Cycle Optimization simplifies optimization with the push of a button.

Efficient

QuickOpt Timing Cycle Optimization optimizes AV and VV intervals for responders and non-responders in about one minute.

Conclusions

QuickOpt Timing Cycle Optimization can increase practice efficiencies and simplify patient management at a fraction of the time and cost of echo-based optimization methods.
St. Jude Medical is focused on reducing risk by continuously finding ways to put more control into the hands of those who save and enhance lives.